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Introduction



5 Graphs

Graphs are a general language for describing and analyzing 

entities with relations/interactions.



6 Many types of data are graphs

Economic Networks

Citation Networks

Image credit: Missoula Current News

Internet

Image credit: Science Image credit: Lumen Learning

Communication Networks Event Graphs

Image credit: visitlondon.com

Underground Networks
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Image credit: SalientNetworks

Computer Networks

Food Webs

Disease Pathways

Image credit: Wikipedia Image credit: ResearchGate

Code Graphs

Many types of data are graphs

3D Shapes
Image credit: Wikipedia

Image credit: The Conversation

Networks of Neurons



8 Outline

➢ Graph Query Processing

• Subgraph Isomorphism

• Graph Similarity

• Community Search

➢ Graph Data Management

• Graph Data Quality Management

• Graph Generation



9 Subgraph Isomorphism

• Query graph 𝑞 = 𝑉, 𝐸, 𝑓𝑙

• Data graph 𝐺 = 𝑉′, 𝐸′ , 𝑓𝑙

• Subgraph Isomorphism: injective function 𝑓𝑖𝑠𝑜: 𝑉 → 𝑉′:

• ∀𝑢 ∈ 𝑉, 𝑓𝑙 𝑢 = 𝑓𝑙(𝑓𝑖𝑠𝑜(𝑢))

• ∀𝑒 𝑢, 𝑢′ ∈ 𝐸, 𝑒(𝑓𝑖𝑠𝑜 𝑢 , 𝑓𝑖𝑠𝑜 𝑢′ ) ∈ 𝐸′

• Determining the existence of subgraph isomorphism is 
NP-complete.

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 2022 SIGMOD (pp. 160-175).



10 Subgraph Isomorphism

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of 
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph Counting

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 2022 SIGMOD (pp. 160-175).



11 Subgraph Isomorphism

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of 
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph Counting

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10

2. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣11

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 2022 SIGMOD (pp. 160-175).



12 Subgraph Isomorphism

Subgraph Counting: Given a query graph 𝑞 and a data graph 𝐺, the problem is to count the number of 
subgraphs in the data graph that match the query graph by subgraph isomorphism.

Subgraph Counting

Subgraph isomorphisms

1. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣10

2. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣5, 𝑣11

3. 𝑢1, 𝑢2, 𝑢3, 𝑢4 → 𝑣1, 𝑣4, 𝑣6, 𝑣11

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 2022 SIGMOD (pp. 160-175).



13 Graph Similarity

Let’s start with a fundamental graph similarity metric: Graph Edit Distance.

Graph Edit Distance aims to determine the minimum number of edit operations required to transform one graph 
into another, and the sequence of edit operations is called a graph edit path.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).

Graph Edit Distance



14 Community Search

➢ Definition: Community search (CS) is defined as the 

task of finding a cohesive subgraph that contains a given 

set of query nodes, emphasizing query-driven discovery 

of structurally and attributably close and well-connected 

communities within a larger graph.

➢ A query set contains one or more nodes that belong to 

the same community.

➢We have disjoint community search and overlapping 

community search, depending on whether a node can 

only belong to one community.
Community Search



15 Knowledge Graph

Definition of Knowledge Graph

Knowledge Graph is defined as a graph of data intended to accumulate and convey knowledge of 
the real world, whose nodes represent entities or concepts and whose edges represent relations 
between them, typically accompanied by ontologies and schemas.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., ... & Zimmermann, A. (2021). Knowledge graphs. ACM Computing Surveys (Csur), 54(4), 1-37.



16 Graph Quality Management

As a specfic data type, researches on knowledge graph are in the same line with general data type.

Definition
The extent to which data are fit for a specified use 
and free of defects with respect to explicit, context-
specific criteria.

Dimension
The extent to which data are fit for a specified use 
and free of defects with respect to explicit, context-
specific criteria.

Lifecycle
a data lifecycle pipeline contains five steps, namely, 
data generation, information extraction, data 
integration, analysis, and application.

Xue, B., & Zou, L. (2022). Knowledge graph quality management: A comprehensive survey. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4969-4988.



17 Graph Data Generation

Definition of Graph Generation

Given a set of observed graphs {G}, graph generation aims to construct a generative model pθ (G) 
to capture the distribution of these graphs, from which new graphs can be sampled ෡G ∼  pθ (G) . 
The generation process can be conditioned on additional information s, i.e., conditional graph 
generation ෡G ∼ pθ (G|s) to apply specific constraints on the graph generation results.

{G} ෡G

Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X., 2022. General graph generators: experiments, analyses, and improvements. The VLDB Journal, pp.1-29.
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19 Graph Query Processing

➢ Subgraph Isomorphism

• Subgraph Matching

• Subgraph Counting

➢ Graph Similarity

• Graph Edit Distance

➢ Community Search

• Disjoint Community Search

• Overlapping Community Search



20 Subgraph Matching

Definition

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

 The objective of the subgraph matching is searching for all subgraph 
isomorphisms from query graph q to data graph G



21 Subgraph Matching

Definition

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.



22 Subgraph Matching: RLQVO

Existing Subgraph Matching Methods

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

The backtracking-based methods can be partitioned in three 
main phases:

1. The complete candidate vertex set generation.

2. Matching order generation.

3. Matching enumeration.



23 Subgraph Matching: RLQVO

Limitations of Existing Order Generation Methods

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

The existing subgraph matching methods usually generate the 
matching order based on the heuristic values, here are some 
examples:

▪ Degree-based ordering

▪ Infrequent label first ordering

▪ Path-based ordering.



24 Subgraph Matching: RLQVO

Limitations of Existing Order Generation Methods

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

Two major limitations:

▪ Cannot fully use the graph information.

▪ Greedy heuristics can lead to local optimum.



25 Subgraph Matching

If ordering based on degree (RI)

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

Degree: 2

Degree: 2 Degree: 2

Degree: 2



26 Subgraph Matching

If ordering based on label frequency

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.

LF: Label frequency 

LF: 3/13 LF: 3/13

LF: 6/13

LF: 1/13



27 Subgraph Matching: RLQVO

Framework

Wang, H., Zhang, Y., Qin, L., Wang, W., Zhang, W., & Lin, X. (2022, May). Reinforcement learning based query vertex ordering model for 

subgraph matching. In 2022 IEEE 38th International Conference on Data Engineering (ICDE) (pp. 245-258). IEEE.



28 Subgraph Matching: GNN-PE

Ye, Y., Lian, X., & Chen, M. (2024). Efficient exact subgraph matching via gnn-based path dominance embedding. Proceedings of the 

VLDB Endowment, 17(7), 1628-1641.

⚫ Design Graph Neural Network (GNN)-based embeddings for graph vertices which enable the 

subgraph matching with 100% accuracy
– Prior works usually trained and used GNN on distinct training and testing graph datasets

– To enable the trained GNN to be over the same training/testing graph data set, we explore basic units of the data graph 

(i.e., unit star subgraphs) with a finer resolution

⚫ Transform the subgraph matching over graphs to the dominance search problem in the 

vector space
– Train the GNN model to learn the dominance relationship between unit star subgraphs

– Generate node and path dominance embeddings by the trained GNN

⚫ GNN-based path embedding (GNN-PE) framework for efficient subgraph matching algorithm
– Cost-model-based query plan generation

– Graph partitioning, pruning strategies, index construction over path embeddings, and multi-way hash join-based 

refinement



29 Subgraph Matching: GNN-PE

⚫ Offline pre-computation
– Dominance relationship learning

– Index construction over path 

dominance embeddings

⚫ Online subgraph matching 
– Cost-model-based query plan 

– Candidate path search in the 

embedding space by the index 

traversal

Ye, Y., Lian, X., & Chen, M. (2024). Efficient exact subgraph matching via gnn-based path dominance embedding. Proceedings of the 

VLDB Endowment, 17(7), 1628-1641.



30 Subgraph Matching: GNN-PE
⚫ Unit structures

– Unit star graph 𝑔𝑣𝑖
 (𝑔𝑞𝑖

): A star subgraph 

containing a center vertex 𝑣𝑖 ∈ 𝑉 𝐺  (𝑞𝑖 ∈ 𝑉(𝑞)) 

and its 1-hop neighbors

– Unit star substructure 𝑠𝑣𝑖
: A (star) subgraph of the 

unit star subgraph 𝑔𝑣𝑖
, i.e., 𝑠𝑣𝑖

⊆ 𝑔𝑣𝑖

⚫ Dominance relationship 
– If a query vertex 𝑞𝑖  in the query graph 𝑞 matches 

with a data vertex 𝑣𝑖, then it must hold that 

𝑜(𝑔𝑞𝑖
) ≼ 𝑜(𝑔𝑣𝑖

)

⚫ Intuition

– If 𝑞 ⊆ 𝐺, 𝑔𝑞𝑖
 must be one of 𝑣𝑖’s substructures 𝑠𝑣𝑖

embedding

Ye, Y., Lian, X., & Chen, M. (2024). Efficient exact subgraph matching via gnn-based 

path dominance embedding. Proceedings of the VLDB Endowment, 17(7), 1628-1641.



31 Graph Query Processing

➢ Subgraph Isomorphism

• Subgraph Matching

• Subgraph Counting

➢ Graph Similarity

• Graph Edit Distance

➢ Community Search

• Disjoint Community Search

• Overlapping Community Search



32 Subgraph Counting: Existing Works

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.

NSIC [KDD’20]

Node representations

Node representations

L L

DIAM

Graph pair
representation

Ĉ

Estimated 
count



33 Subgraph Counting: NeurSC

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 
2022 International Conference on Management of Data (pp. 160-175).

 Neural Subgraph Counting method: NeurSC



34 Subgraph Counting: NeurSC

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 
2022 International Conference on Management of Data (pp. 160-175).

 Substructure Extraction

• Complete Candidate Vertex Set (𝐶𝑆):

• 𝐶𝑆 𝑢  for query vertex 𝑢 ∈ 𝑉 is a set of data vertices 𝑣 ∈ 𝑉′

• If 𝑢, 𝑣  exists in a match from 𝑞 to 𝐺, then 𝑣 ∈ 𝐶𝑆(𝑢)

• Candidate set of query 𝑞: 𝐶𝑆 q =∪𝑢∈𝑉 𝐶𝑆(𝑢)

• First, we determine the complete candidate vertex set for all query 
vertices using local pruning and global refinement.

• Based on neighboring and label information

• Induced subgraphs of G with vertices 𝐶𝑆 q  are used as the 
candidate substructures, denoted as 𝐺𝑠𝑢𝑏



35 Subgraph Counting: NeurSC

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 
2022 International Conference on Management of Data (pp. 160-175).

 Wasserstein Estimator

• Intra-Graph Neural Network
• For both query graph and substructure.

• Capture structural and attribute information.

• 𝒉𝒖
(𝒌)

= 𝑴𝑳𝑷 𝒌 ( 𝟏 + 𝝐 𝒌 𝒉𝒖
𝒌−𝟏

, σ𝒖′∈𝑵𝒒(𝒖) 𝒉𝒖′
(𝒌)

)

• Inter-Graph Neural Network

• Construct a bipartite graph for inter-relationship.

• Capture the mapping relationship between query 

vertices and corresponding candidate vertices

• 𝒉𝒖
(𝒌)

= 𝝈(𝒂𝒖𝒖
𝒌

𝜽 𝒌 𝒉𝒖
𝒌−𝟏

, σ𝒗∈𝑵𝑮𝑩
(𝒖) 𝒂𝒖𝒗

𝒌
𝜽 𝒌 𝒉𝒗

(𝒌)
)



36 Subgraph Counting: NeurSC

Wang, H., Hu, R., Zhang, Y., Qin, L., Wang, W., & Zhang, W. (2022, June). Neural subgraph counting with wasserstein estimator. In Proceedings of the 
2022 International Conference on Management of Data (pp. 160-175).

 Wasserstein Estimator
• Readout

• Sum Pooling

• Concatenation of intra- and inter-graph representations.

• Prediction
• Multi-layer perceptron.

• Wasserstein Discriminator
• Minimize Wasserstein distance between 𝑞 and 𝐺𝑠𝑢𝑏

• Further utilize the vertex correspondence information 
between 𝑞 and 𝐺

• 𝐿𝑤 𝑞, 𝐺𝑠𝑢𝑏 =  σ𝑢∈𝑉′ 𝑞 𝑓𝜔 ℎ𝑢
−  σ𝑣∈𝑉′ 𝐺𝑠𝑢𝑏

𝑓𝜔 ℎ𝑣

• Expressive Power
• WEst is as powerful as 1-Weisfeiler-Lehman test.



37 Subgraph Counting: LearnSC

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.

An efficient and unified framework, LearnSC [ICDE’24]

Decomposition Representation Interaction Estimation Aggregation



38 Subgraph Counting: LearnSC

LearnSC：data graph decomposition

➢ Data graphs are large, lead to heavy cost 

on deep learning models

➢ Data graph contains multiple unqualified 

nodes, which are negligible for matching 

results

Decompose data graph, remove unqualified nodes/edges, extract key parts

Query graph Data graph

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



39 Subgraph Counting: LearnSC

Data graph decomposition

➢ Filter candidate nodes

To remove unqualified nodes

• Neighborhood information 

• Iterative removal

Query graph

u1: [1, 3, 4] 
u2: [2, 5, 6, 7, 8, 9]
u3: [2, 5, 6, 7, 8, 9]
u4: [10, 11, 13, 14]
u5: [10, 11, 13, 14]

Initial candidates

u1: [1, 3, 4]
u2: [2, 5, 6, 7, 8, 9]
u3: [2, 5, 6, 7, 8, 9]
u4: [10, 11, 13, 14]
u5: [10, 11, 13, 14]

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



40 Subgraph Counting: LearnSC

Data graph decomposition

➢ Extract substructures

Extract substructures according to candidates

• Vertex-induced subgraphs

Data graph

Filtered candidates

u1: [1, 3, 4]
u2: [2, 5, 6, 7, 8, 9]
u3: [2, 5, 6, 7, 8, 9]
u4: [10, 11, 13, 14]
u5: [10, 11, 13, 14]

Valuable data graph nodes

1v 3v 4v

5v 6v 8v 9v

10v 11v 13v 14v

1v 3v 4v

5v 6v 8v 9v

10v 11v 13v 14v

substructures



41 Subgraph Counting: LearnSC

Data graph

u1: [1, 3, 4]
u2: [2, 5, 6, 7, 8, 9]
u3: [2, 5, 6, 7, 8, 9]
u4: [10, 11, 13, 14]
u5: [10, 11, 13, 14]

1v 3v 4v

5v 6v 8v 9v

10v 11v 13v 14v

1v 3v 4v

5v 6v 8v 9v

10v 11v 13v 14v

Filtered candidates Valuable data graph nodes

10v 11v 13v 14v

substructures

➢ Extract substructures

Extract substructures according to candidates

• Vertex-induced subgraphs

• But avoid redundant edges

Data graph decomposition



42 Subgraph Counting: LearnSC

Decompose query graph, reserve dependency, improve representation quality

Query graph Data graph

LearnSC：Query graph decomposition

➢ Query graphs are various, Explicitly learn 

subqueries to improve the representation 

qualities

➢ The dependency among subqueries are 

supposed to be reserved

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



43 Subgraph Counting: LearnSC

LearnSC：query graph decomposition

➢ Skeleton-based query graph decomposition

Split query into subqueries, with a skeleton reserving dependency

• Post process after splitting

• Built a skeleton recording connecting relations and shared nodes

Query graph Subqueries Skeleton
Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



44 Subgraph Counting: LearnSC

LearnSC：Representations

➢ To embed nodes in substructures and subqueries into vectors, which captures 

implicit feature

• MLP → Node attribute features

• GNN → Topology features

Input graph Label 
encode 

Label 
embeddings

Node 
embeddings

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



45 Subgraph Counting: LearnSC

➢ Subgraph counting is based on subgraph 

matching

➢ The potential matching information among 

query node and data graph node is essential

LearnSC：Interaction

Interact cross graphs, capture potential matching information

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



46 Subgraph Counting: LearnSC

LearnSC：interaction

➢ Construct intergraph

Only potential matching nodes interacts

• Candidates are potential matching nodes

• Query nodes connect to their candidate to construct an 

intergraph

A subquery and a substructure Intergraph
Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



47 Subgraph Counting: LearnSC

LearnSC：Estimation

➢ Representations captures label features，

topology features, and potential matching 

information

➢ Using representations to estimate the count 

of a subquery in a substructure

Readout representations, estimate counts

Hou, W., Zhao, X., & Tang, B. (2024, May). Learnsc: An efficient and unified learning-based framework for subgraph counting problem. In 2024 IEEE 40th 
International Conference on Data Engineering (ICDE) (pp. 2625-2638). IEEE.



48 Subgraph Counting: FlowSC

Motivation

Unsatisfactory Candidate Filtering 

Q G

• GQL1 and EdgeBipartite2 do not take triangle edge (𝑢1, 𝑢2) into consideration, so 𝑣1is not removed from 𝐶(𝑢0).

• TriangleSafety2 can remove 𝑣1from 𝐶(𝑢0), but is limited by efficiency issue.

1 Huahai He and Ambuj K. Singh. 2008. Graphs-at-a-Time: Query Language and Access Methods for Graph Databases. In Proceedings of SIGMOD. 405–418.
2 Wonseok Shin, Siwoo Song, Kunsoo Park, and Wook-Shin Han. 2024. Cardinality Estimation of Subgraph Matching: A Filtering-Sampling Approach. In Proceedings of VLDB. 1697–1709.



49 Subgraph Counting: FlowSC

Motivation
Lack of explicit modelling between structural features and subgraph counts.

• They do not capture the explicit relationship between structure and specific counts, but regress blindly.

• unsatisfactory performance in both efficiency and accuracy.

LSS NeurSC LearnSC

Guo, Qiuyu, et al. "Efficient and Accurate Subgraph Counting: A Bottom-up Flow-learning Based Approach.” VLDB 2025



50 Subgraph Counting: FlowSC

Motivation

Inspired by the candidate-tree based counting:

Limitations:

• Based on a spanning tree, the constraints of non-tree edges are ignored.

• Isomorphism constraints are not considered in the tree counting.

(a) Query graph � (b) Compact CS, Spanning tree� �

4

2211

11111

2

(c) Counting Candidate Trees (d) Success

(e) Fai lure (Injectivi ty) (f ) Fai lure (Non-tree edge)

Figure 4: New Running Example - Candidate Tree Sampl ing

We demonstrate in Section 7.4 that our strategy outperforms

other intuitively appealing alternatives.

Counting Candidate Trees. We develop a dynamic program-

ming algorithm to obtain the exact count of candidate trees for

a given � � . Let � � bea subtree of � � rooted at � ∈� � and � (� , � ) be

the number of candidate trees for � � with � mapped to � . The total

number of candidatetreesfor � � can becounted as
∑
�∈� (� ) � (� , � ).

For a leaf node � ∈� � and � ∈� (� ), it is clear that � (� , � ) = 1.
For a non-leaf node � ∈� � and � ∈� (� ), a candidate tree for � �
consists of candidate trees for � � � for each child � � of � , and the

candidate for each � � is chosen from � (� � |� , � ). Hence, we have

� (� , � ) =
∏

� � ∈children of �

∑

� � ∈� (� � |� ,� )

� (� � , � � ) (2)

which can be computed in � (|� � ||� � |) time, employing a bottom-

up dynamicprogrammingapproach similar toJSub [56] andDAF[22].

Uniform Sampling of Candidate Trees. Basedon thecandidate

tree counts computed asabove, we develop a sampling algorithm

that returns each candidate tree uniformly at random. Let � denote

a sample candidate tree for � � . Recall that the candidate tree is

def ned as a vertex mapping. For the root vertex � � , we sample �
from � (� � ) with weights proportional to � (� � , � ). For � ≠� � , let

� � be theparent of � in � � . Given � � = � (� � ), we iteratively sample

� (� ) for � with BFStraversal of � � . We choose � (� ) from candidate

neighbors� (� |� � , � � ) with weights proportional to � (� , � ).
The detailed implementation is presented in Algorithm 4.

Example 5.4. Figure 4 demonstrates the process of counting and

sampling candidate trees. For the query graph � , the compact CSis

built asin Figure4b. Theedges (� 2, � 4) and (� 3, � 4) arenot included

to attain � � as they have larger densities of 2/3. Figure 4c shows

the value of resulting � (� , � ) after counting candidate trees.

Algor i thm 4: (CS, � � , � )

Input: The compact CS, a spanning tree� � of � , the

computed weights �
Output: A sampled candidate tree, uniformly at random

1 � � ← root node of � � ;

2 Sample[� � ] ← draw � from � (� � ) at random with

probability proportional to � (� � , � );

3 foreach � in BFStraversal of � � do

4 let � � be the parent of � , and � � be Sample[� � ];

5 Sample[� ] ← draw � from � (� |� � , � � ) at random with

probability proportional to � (� , � );

6 return Sample

For thesampling, westart with choosing a root with weight 2 : 4

for � 1 and � 2, respectively. For example in Figure 4d, when � 2 is

chosen, � 4 and � 6 are theonly candidateneighborsof (� 1, � 2) for � 2
and � 3 respectively, thusthey aresampled with probability 1. For � 4,
we take a random sample from � (� 4 |� 1, � 2). Analogously, � (� 5) is

chosen among � (� 5 |� 3, � 6). As the resulting mapping in Figure4d

is injective, we check whether non-tree edges (� 2, � 4) and (� 3, � 4)
are valid. Since (� 4, � 8) and (� 6, � 8) are both in the candidate edges,

Figure 4d is a success.

When � 4 is chosen for both � 2 and � 5 (Figure 4e), the resulting

sample is an instance of failure since the mapping is not injective.

If � (� 2) = � 3 and � (� 4) = � 7, the candidate for query edge (� 2, � 4)
is (� 3, � 7). However, � 7 ∉ � (� 4 |� 2, � 3), and thus the instance in

Figure4f isalso a failure. Sinceonesuccesswas found among three,

and thereare6candidatetrees, wereturn 2astheestimate. In reality

there are two embeddings (� 2, � 4, � 6, � 8, � 3) and (� 2, � 4, � 6, � 9, � 3).

Theorem 5.5 (Uniform Sampling). Algorithm 4 samples candidate

tree for � � uniformly at random.

Sample Size. If we perform #� trials and obtain #� successes, the

sample success ratio �̂ = #�/#� is an estimate of the true propor-

tion � . Let � denote the acceptable failure probability and � denote

the tolerable relative error. To achieve the probability guarantee

P
[
�−1� ≤ �̂ ≤� �

]
≥ 1− � , we utilize the Clopper-Pearson in-

terval [11, 17], which is the interval (� � (#� , #� ), � � (#� , #� )) such

that

P [(� � (#� , #� ) ≤ � ≤� � (#� , #� ))]≥1−� , (3)

where� � (#� , #� ) and � � (#� , #� ) arethevaluesthat can becomputed

from � , #� , and #� (e.g., using the Boost library [1]). We adaptively

determinethesamplesizeby takingsamplesuntil �−1�̂ ≤ � � (#� , #� )
and � � (#� , #� ) ≤� �̂ are met, leading us to:

P
[
�−1� ≤ �̂ ≤� �

]
= P
[
�−1�̂ ≤ � ≤� �̂

]
(4)

≥P [� � (#� , #� ) ≤ � ≤� � (#� , #� )]≥1−� .

In our experiments where we had 1,000 – 1,000,000 trials, we

found out that, irrespective of the number of trials, 88 successes

were suf cient to satisfy the condition stated with the Clopper-

Pearson interval (Equation 4) for � = 0.05 and � = 1.25.
For hard cases in which achieving the condition may require

an unreasonable amount of computation, we terminate the tree

sampling immediately and use the graph sampling described in

Section 6. For the experiments, we stop if there are no more than

7

W 𝑢, 𝑣 =  ෑ

𝑢𝑐∈𝑁𝑐(𝑢)

 ෍

𝑣𝑐∈𝐶(𝑢𝑐|𝑢,𝑣)

𝑊(𝑢𝑐, 𝑣𝑐)

Guo, Qiuyu, et al. "Efficient and Accurate Subgraph Counting: A Bottom-up Flow-learning Based Approach.” VLDB 2025



51 Subgraph Counting: FlowSC

Overview

Customized 

Message 

Aggregation

Readout

MLP

̂�

Concatenation

�

�

� �Message-passing view in Message-passing view in 

Candidate Filtering

Build HQ

Build HC

One-pass Bottom-up

Message Passing Customized 

Message 

Aggregation

Q

G

Q

G

Flow-learning Prediction

HQ

HC

3-step learning-based method: FlowSC 

Guo, Qiuyu, et al. "Efficient and Accurate Subgraph Counting: A Bottom-up Flow-learning Based Approach.” VLDB 2025



52 Subgraph Counting: FlowSC

Our solution – BipartitePlus: Bipartite graph-based filtering can be enhanced by the connectivity 

check for the neighbors of the matching vertex pairs. 

Q

G
𝑣1 is removed from 𝐶(𝑢0) by 𝐵𝑢0

𝑣1.



53 Subgraph Counting: FlowSC

• FlowSC: Simulating the candidate tree-based counting by flow-learning

• One-pass Bottom-up Message-passing - simulating the bottom-up dynamic programming

• Customized Message Aggregation – take matching condition checks into learning

• Prediction - regression

Flow Learning



54 Subgraph Counting: FlowSC

Accuracy Evaluation



55 Graph Query Processing

➢ Subgraph Isomorphism

• Subgraph Matching

• Subgraph Counting

➢ Graph Similarity

• Graph Edit Distance

➢ Community Search

• Disjoint Community Search

• Overlapping Community Search



56 Machine Learning Models for Graph Edit Distance

How about learning-based techniques for graph similarity

Let’s focus on a fundamental graph similarity metric: Graph Edit Distance.

Graph Edit Distance aims to determine the minimum number of edit operations required to transform one graph 
into another, and the sequence of edit operations is called a graph edit path.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).



57 Machine Learning Models for Graph Edit Distance

GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

Graph edit distance can be modelled as maximum bipartite matching.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.

a, b: An instance of graph edit path. c, d: Solving GED via bipartite matching.
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GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.

Bipartite graph matching

Bipartite graph generation
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GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.
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GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.



61 Machine Learning Models for Graph Edit Distance

DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

Can diffusion models be applied on Graph Edit Distance Computation?

Diffusion models for generation of (bipartite) graph matching.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).
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DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

In the first phase, DiffGED first samples 𝑘 random initial node matching matrices, then DiffMatch will denoise 
the sampled node matching matrices. 
In the second phase, one node mapping will be extracted from each node matching matrix in parallel, and edit 
paths will be derived from the node mappings.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).
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DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

Experimental results: achieve state-of-the-art performance with nearly 100% accuracy. 

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).



64 Machine Learning Models for Graph Edit Distance

Huang, Wei, et al. "Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via Preference-aware GAN." arXiv 

preprint arXiv:2506.01977 (2025).

Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via 

Preference-aware GAN

Optimization objective of Matching-based GED solver: 

• Given a graph pair, find an optimal node matching matrix 𝜋∗ that minimizes the edit cost 𝒄(𝑮𝟏, 𝑮𝟐, 𝝅∗)

Supervised training objective of Matching-based GED solver 𝒈𝝓:

What if ground-truth optimal node matching matrix 𝝅∗ is not available during training?

• A naive approach: Starting from a random node matching matrix ത𝜋, train 𝑔𝜙 to recover ത𝜋 by ℒ𝑟𝑒𝑐(ഥ𝜋), and 

progressively update ത𝜋 with the latest best solution predicted by 𝑔𝜙           Lack of exploration  

• A better approach: Not only trained to exploit, but also trained to explore better ത𝜋 efficiently         

 ℒ𝑔𝜙
= ℒ𝑟𝑒𝑐(ഥ𝜋) + 𝜆ℒ𝑒𝑥𝑝𝑙𝑜𝑟𝑒
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Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via 

Preference-aware GAN

How to explore better solutions? (How to design 𝓛𝒆𝒙𝒑𝒍𝒐𝒓𝒆?)

• GAN-based approach: Given a node matching matrix ො𝜋𝑔𝜃
 predicted by 𝑔𝜙,  a discriminator 𝐷𝜃 is trained to 

assign a score 𝐷𝜃 𝐺1, 𝐺2, ො𝜋𝑔𝜃
, and 𝑔𝜙 is trained to maximize 𝐷𝜃 𝐺1, 𝐺2, ො𝜋𝑔𝜃

 How to train 𝑫𝜽? What score should 𝑫𝜽 assign?

• A naive approach: 𝐷𝜃 is trained to estimate the normalized edit cost                                                                  

• Ideally: 𝑔𝜙 is trained to minimize the edit cost             aligns with the optimization objective

But what if the following cases occur?

• 𝜋1 with normalized edit cost = 0.4 & 𝜋2 with normalized edit cost = 0.6           𝝅𝟐 is better than 𝝅𝟏 

• Case 1: 𝐷𝜃 𝐺1, 𝐺2, 𝜋1 = 0.1 & 𝐷𝜃 𝐺1, 𝐺2, 𝜋2 = 0.9           ℒ𝐷𝜃
= 0.1 − 0.4 2 + 0.9 − 0.6 2 = 0.18

• Case 2: 𝐷𝜃 𝐺1, 𝐺2, 𝜋1 = 0.6 & 𝐷𝜃 𝐺1, 𝐺2, 𝜋2 = 0.4           ℒ𝐷𝜃
= 0.6 − 0.4 2 + 0.4 − 0.6 2 = 0.08 

• Case 2 results in lower ℒ𝐷𝜃
             𝐷𝜃 prefers Case 2            𝑔𝜙 prefers 𝜋1        𝝅𝟐 should be preferred!



66 Machine Learning Models for Graph Edit Distance
Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via 

Preference-aware GAN

How to train 𝑫𝜽? What score should 𝑫𝜽 assign?

• Preference optimization: if 𝜋2 is preferred to (≻) 𝜋1, then 𝜋2 should be assigned a higher score than 𝜋1

• 𝐷𝜃 is trained to maximize the score margin by minimizing the Bayes Personalized Ranking loss:

ℒ𝐵𝑃𝑅(𝜋1,𝜋2) = −log(𝜎(𝐷 𝜃 𝐺1, 𝐺2, 𝜋2 − 𝐷 𝜃 𝐺1, 𝐺2, 𝜋1 ))



67 Machine Learning Models for Graph Edit Distance
Towards Unsupervised Training of Matching-based Graph Edit Distance Solver via 

Preference-aware GAN

Experimental results: The matching-based GED solver trained with unsupervised preference-aware GAN 

achieved performance comparable to that under supervised learning.



68 Graph Query Processing

➢ Subgraph Isomorphism

• Subgraph Matching

• Subgraph Counting

➢ Graph Similarity

• Graph Edit Distance

➢ Community Search

• Disjoint Community Search

• Overlapping Community Search
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➢ Definition: Community search (CS) is defined as the 

task of finding a cohesive subgraph that contains a given 

set of query nodes, emphasizing query-driven discovery 

of structurally close and well-connected communities 

within a larger graph.

➢ A query set contains one or more nodes that belong to 

the same community.

➢We have disjoint community search and overlapping 

community search, depending on whether a node can 

only belong to one community.
Community Search



70 Disjoint Community Search: ALICE
Motivation

• Existing non-learning methods: 

➢𝑘-core based ACS model

➢𝑘-truss based ACS model
Attribute Irrelevance

Structure Inflexibility

• Existing learning-based methods: 

Interdependence among entities

Efficiency and scalability 
issue for AQD-GNN

Wang, Jianwei, et al. "Neural attributed community search at billion scale." Proceedings of the ACM on Management of Data 1.4 (2024): 1-25.



71 Disjoint Community Search: ALICE
Our Method

• Candidate Subgraph Extraction 

Structure-based pruning with density sketch modularity

Attribute-based pruning

• Consistency-aware Net (ConNet): 

Cross-Attention Encoder

Structure-Attribute Consistency & Local Consistency
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Candidate Subgraph Extraction

• Structure-based pruning 

k-hop neighborhood with largest density sketch modularity

• Attribute-based pruning: 

➢1-hop DSM: 0.504

➢2-hop DSM: −0.094

➢3-hop DSM: 0.0

k-hop neighborhood with largest bipartite modularity in the node-attribute bipartite graph

Wang, Jianwei, et al. "Neural attributed community search at billion scale." Proceedings of the ACM on Management of Data 1.4 (2024): 1-25.



73 Disjoint Community Search: ALICE

ConNet Architecture 

Query Encoding

Graph Encoding

Lemma: ConNet is as powerful as the 1-WL algorithm.



74 Disjoint Community Search: TransZero

Motivation

• Existing non-learning methods: 

➢𝑘-core based CS model

➢𝑘-truss based CS model

➢𝑘-ECC based CS model

Structure Flexibility

Label Free

• Existing learning-based methods: 

➢QD-GNN

➢COCELP Structure Flexibility

Label Free

Structure Flexibility

Label Free

Wang, Jianwei, et al. "Efficient Unsupervised Community Search with Pre-Trained Graph Transformer." Proceedings of the VLDB Endowment 17.9 (2024): 2227-2240.



75 Disjoint Community Search: TransZero

Our Method

Two-stage framework: 

Offline pre-training and Online search

Unsupervised community score learning: 

Offline pre-training with CSGphormer

&& Online score computation via similarity

Unsupervised community identification: 

Identification with Expected Score Gain

&& Local Search && Global Search

Wang, Jianwei, et al. "Efficient Unsupervised Community Search with Pre-Trained Graph Transformer." Proceedings of the VLDB Endowment 17.9 (2024): 2227-2240.
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Offline Pre-training: Augmented Subgraph Sampler

Conductance-based augmented subgraph sampler 

K-hop subgraph with lowest conductance value

Wang, Jianwei, et al. "Efficient Unsupervised Community Search with Pre-Trained Graph Transformer." Proceedings of the VLDB Endowment 17.9 (2024): 2227-2240.



77 Disjoint Community Search: TransZero

Offline Pre-training: CSGphormer



78 Disjoint Community Search: TransZero

Online Search: IESG

# of internal nodes
expected score 
for nodes in the 
community

sum of internal 
scores

is a hyperparameter to control granularity

Expected Score Gain: 

Identification with expected score gain

query-driven && cohesive 
constraint

nodes with high 
community scoreThe problem of IESG is NP-hard

Wang, Jianwei, et al. "Efficient Unsupervised Community Search with Pre-Trained Graph Transformer." Proceedings of the VLDB Endowment 17.9 (2024): 2227-2240.



79 Disjoint Community Search: TransZero

Experiment results

TransZero has an outstanding performance, especially under the inductive 
setting.



80 Graph Query Processing

➢ Subgraph Isomorphism

• Subgraph Matching

• Subgraph Counting

➢ Graph Similarity

• Graph Edit Distance

➢ Community Search

• Disjoint Community Search

• Overlapping Community Search



81 Overlapping Community Search
Motivation and Application

(1) Literature Discovery (2) Fraud Detection (3) Recommender System 

1. Efficiently isolate the most relevant publications within huge citation networks.

2. Accurately detect fraudulent entities hidden in highly imbalanced transactional datasets.

3. Deliver a list of products closely aligned with each user’s interests from extensive catalogues.

Sima, Q., Yu, J., Wang, X., Zhang, W., Zhang, Y., & Lin, X. (2025). Deep overlapping community search via subspace embedding. SIGMOD.



82 Overlapping Community Search

Background

❑ Nodes is allowed to have multiple 
community affiliations. 

❑ Colors on nodes represent community 
label, where nodes have multiple colors 
means they belongs to different 
communities.

❑ Each community exhibiting distinct 
characteristics such as sizes, levels of 
cohesiveness, and attribute patterns. 

❑ Given the same query node, different 
users may seek different communities.

Sima, Q., Yu, J., Wang, X., Zhang, W., Zhang, Y., & Lin, X. (2025). Deep overlapping community search via subspace embedding. SIGMOD.
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Existing Solutions and Research Gaps 

 Algorithm-based: Popular algorithm-based 
approaches use different structural constraints, 
such as 𝑘-core, 𝑘-truss, and 𝑘-clique (Example(a)).

 Machine learning-based: ML-based community 
search models are task orientated and identify 
communities by prior knowledge learned from 
ground truth labels (Example(b)). 

❑ Both approach failed to isolate a ‘pure’ 
community according to user specified 
requirement. 

❑ User should allow to select multiple targeted 
communities and only search for the 
intersect set. 

Research Gaps

Overlapping Community Search (OCS)

Sima, Q., Yu, J., Wang, X., Zhang, W., Zhang, Y., & Lin, X. (2025). Deep overlapping community search via subspace embedding. SIGMOD.
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Efficient and effective model structure - SMN

Framework of Simplified Multi-hop Attention Networks (SMN) 

Sima, Q., Yu, J., Wang, X., Zhang, W., Zhang, Y., & Lin, X. (2025). Deep overlapping community search via subspace embedding. SIGMOD.
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Simplified Multi-hop Attention Network - SMN

 Aggregation: Inspired by SGC [2], we removes the non-linear activation functions during aggregation to improve the model 

training speed. This simplified model structure reduce the model training complexity to a multilayer perceptron levels, which 

significantly increase the model training efficiency. Then, we generate multi-hop features channel during preprocessing stage 

such as 𝑿, ෡𝑨𝟏𝑿, … ෡𝑨𝒌𝑿. 

  

 Normalization: Removing the self-loop reduces redundancy in message passing and differentiates messages from each hop.

 Propagation: Hop-wise attention is adopted to propagate and fuse the embeddings learned from different hops as:

Sima, Q., Yu, J., Wang, X., Zhang, W., Zhang, Y., & Lin, X. (2025). Deep overlapping community search via subspace embedding. SIGMOD.
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Effectiveness OCS & OCIS
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88 Graph Data Management

➢ Graph Data Quality Management

• Data Quality Assessment

• Data Quality Enhancement

➢ Graph Generation

• Learning-based Graph Generation

• Function-driven Graph Generation



89 Introduction: Knowledge Graphs (KGs)

○ Structured, Multi-relational

○ 𝒢 = ℰ, ℛ, ℱ  A Triple → (Head Entity, Relation, Tail Entity)

ℎ, 𝑟, 𝑡 ∈ ℱ ℎ, 𝑡 ∈ ℰ;  𝑟 ∈ ℛ

○ e.g. (Eiffel_Tower, is_located_in, Paris)

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).



90 Knowledge Graph Quality Management

As a specfic data type, researches on knowledge graph are in the same line with general data type.

Definition
The extent to which data are fit for a specified use 
and free of defects with respect to explicit, context-
specific criteria.

Dimension
The extent to which data are fit for a specified use 
and free of defects with respect to explicit, context-
specific criteria.

Lifecycle
a data lifecycle pipeline contains five steps, namely, 
data generation, information extraction, data 
integration, analysis, and application.

Xue, B., & Zou, L. (2022). Knowledge graph quality management: A comprehensive survey. IEEE Transactions on Knowledge and Data Engineering, 35(5), 4969-4988.



91 Challenges for KG Error: Diverse Error Types

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

④

①

② ③

① Missing Entity

② Wrong Relation

③ Missing Relation

④ Entity Confusion

          ……

Unknown Types → Unavailable Labeled errors



92 KG Error Detection

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

Given a knowledge graph 𝒢 with potential errors

The proposed framework could learn a confidence score for each triple

Detecting errors by ranking all the scores

• How to design an augmentation mechanism for KGs?

• How to design a tailored encoder for KGs ?

Problem Statement

 



93 ContrAstive Knowledge Graph Error Detection (CAGED)

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

CAGED Model

 

①

②

③④



94 Augmentation Rules

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

➢ Augmentation rules are used to generate two views of KG in triple-level.

𝑥𝐼

𝑧𝐼

Consistency

Normal triples Abnormal triples

𝑥𝐴

𝑧𝐴

Inconsistency



95 Augmentation Rules

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).
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96 EaGNN Encoder

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

Error-aware Knowledge Graph Neural Network



97 EaGNN Attention Layer

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

➢A tailored encoder is required to alleviate the impact of errors.

neighbors of 𝒒𝒊  → 𝒒𝟏, 𝒒𝟐, … , 𝒒𝒎

𝛼𝑖𝑗 = 𝒜(𝐖𝐪i, 𝐖𝐪j)

Attentional Function

Attention Coefficient

𝛼𝑖𝑗 =
exp(𝛼𝑖𝑗)

σ𝑘=1
𝑚 exp(𝛼𝑖𝑘)

(Softmax Function)



98 EaGNN Attention Layer

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

➢A tailored encoder is required to alleviate the impact of errors.

𝛼𝑖𝑗 = ൝
𝛼𝑖𝑗,  𝛼𝑖𝑗 ≥ 𝜇

0, 𝛼𝑖𝑗 < 𝜇

Attention Threshold



99 Joint Optimization

Zhang, Q., Dong, J., Duan, K., Huang, X., Liu, Y., & Xu, L. (2022, October). Contrastive knowledge graph error detection. In Proceedings of the 31st ACM International Conference on Information & Knowledge 
Management (pp. 2590-2599).

➢  Translational Loss with Negative Sampling

➢  Contrastive Loss 

𝑠𝑖𝑚 𝒙𝒊, 𝒛𝒊 =
𝒙𝒊 𝒛𝒊

𝒙𝒊  |𝒛𝒊|



100 Graph Data Management

➢ Graph Data Quality Management

• Data Quality Assessment

• Data Quality Enhancement

➢ Graph Generation

• Learning-based Graph Generation

• Function-driven Graph Generation



101 Missing Data Imputation

Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Problem Definition

 



102 Missing Data Imputation

Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Motivation 

Deploy a sophisticated deep learning (DL) model

Heavily rely on the global distribution



103 Missing Data Imputation

Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Our Method 

• Framework design-NOMI

Neural Network Gaussian Process Imputator (NNGPI)

Retrieval Module and Uncertainty-based Calibration

• Theoretical foundation

NOMI can be reformulated as an instance of the EM algorithm
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Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Retrieval Module

Similarity computation

Select top-k similar neighbors 

Input construction



105 Missing Data Imputation

Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Neural Gaussian Network Imputation

𝐿-layer neural network

Assume that                represents a Gaussian Process, thus             is also a GP. 

the non-linearity function output of previous layer

number of neurons in layer 𝑙

is a summation of i.i.d. terms. According to the Central Limit Theorem, 

approach a Gaussian distribution when      grows towards infinity.
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Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Training Objectives
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Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Experiments

• Metric 

• Missing Mechanism 

MCAR

MAR

MNAR
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Wang, J., Zhang, Y., Wang, K., Lin, X., & Zhang, W. (2024). Missing data imputation with uncertainty-driven network. Proceedings of the ACM on Management of Data, 2(3), 1-25.

Experiments

NOMI reduces the imputation RMSE, by 24.58% and 56.64% compared to VGAIN and TDM

NOMI reduces the imputation MAE, by 25.14% and 37.16% compared to VGAIN and TDM



109 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

On LLM-enhanced mixed-type data imputation with high-order message passing

Problem Definition

 
• Mixed-type Missing Data Imputation

Aims to impute the unobserved elements in the raw data, i.e.,           , and make 
the imputed matrix      as close to the real complete dataset     as possible. The 
raw data matrix      may contain numerical, categorical and text data.

Incomplete Datasets Models Imputation



110 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Background and Motivations 

• Existing learning-based methods and rule-based methods:

➢MICE

➢GAIN / VGAIN

➢GRAPE / IGRM

➢TDM, ReMasker and so on 

Text data

Num. and Cate data

• Existing LLM-based methods: 

➢DFMs

➢Table-GPT / Jellyfish Text data

Num. and Cate data

Text data

Num. and Cate data



111 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Motivation 1: Global-Local Information

The name of the president is relevant not 

only to their nation and term but also to 

the sequential relationship of terms.



112 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Motivation 2: High-order Relationship

Neither the nation nor the term alone is 

sufficient to fully determine the Name.



113 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Motivation 3: Inter-column Heterogeneity and Intra-Column Homogeneity

The name is text data and the nation is 

categorical data. Furthermore, the name 

format remains consistent across rows.



114 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Our Method: UnIMP

Bidirectional High-order Message Passing: 

Node-to-Hyperedge and Hyperedge-to-Node

Cell-Oriented Hypergraph Modeling: 

Serialization and Tokenization

and Propagation of LLM backbone
XFusion Block and Projection Head



115 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Our Method: Cell-Oriented Hypergraph



116 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Our Method: Feature Encoding

Attribute-Value Serialization

Tokenization

Propagation of LLM backbone



117 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Our Method: Bidirectional High-order Message Passing

Node-to-Hyperedge Hyperedge-to-Node

Updates node representations.
Update the representation of hyperedge.



118 Mixed-type Missing Data Imputation

Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Evaluation: Accuracy Over Numerical and Categorical Data

These results highlight the excellence of UnIMP and UnIMP-ft in imputing numerical and 
categorical data.
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Wang, Jianwei, et al. “On llm-enhanced mixed-type data imputation with high-order message passing.” VLDB (2025)

Evaluation: Accuracy Over Text Data

Both UnIMP and UnIMP-ft outperform previous LLM-based methods consistently.
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➢ Graph Data Quality Management

• Data Quality Assessment

• Data Quality Enhancement

➢ Graph Generation

• Learning-based Graph Generation

• Function-driven Graph Generation
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Definition of Graph Generation

Given a set of observed graphs {G}, graph generation aims to construct a generative model pθ (G) 
to capture the distribution of these graphs, from which new graphs can be sampled ෡G ∼  pθ (G) . 
The generation process can be conditioned on additional information s, i.e., conditional graph 
generation ෡G ∼ pθ (G|s) to apply specific constraints on the graph generation results.

{G} ෡G

Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X., 2022. General graph generators: experiments, analyses, and improvements. The VLDB Journal, pp.1-29.



122 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:
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Decomposing Graph Generation into Recursive Expansion:
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Decomposing Graph Generation into Recursive Expansion:

 



125 Recursive: Kronecker



126 Autoregressive: GraphRNN

Decomposing Graph Generation into two RNNs:

 
➢ Graph-level: generates sequence of nodes

➢ Edge-level: generates sequence of edges for each new node

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.



127 Autoregressive: GraphRNN

Visualization of input graphs and generated graphs

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.



128 Autoregressive: GraphRNN

Quantitative Comparison on Generative Performance

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.



129 Random Walk: NetGAN

Explicit vs. implicit models

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.

• Explicit models have a parametric specification 
of the data distribution 

• Observe patterns and manually specify a model 
to capture them 

• Learn via MLE, …

• Implicit models define a stochastic process 
that directly generates data 

• Likelihood free: learn by comparison with the 
true data distribution (e.g. class probability 
estimation, GANs)



130 Random Walk: NetGAN

Challenges 

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.

1. Single large graph as input 
• Compared to e.g. many images in computer vision 

2. Quadratic scaling and sparsity 
• For 𝑁 nodes there are 𝑁2 possible edges 
• Real graphs have |𝐸| ≪ 𝑁2 significantly fewer edges
 
3. Discrete output samples 
• Can’t easily backpropagate through sampling step 

4. Permutation invariance
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Decomposing Graph Generation into learning a distribution of random walks over the graph

 

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.
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Model Framework Generator

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



133 Random Walk: NetGAN

Graph assembly: sample edges with probability proportional to their transition counts

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



134 Random Walk: NetGAN

Key point: Generate graphs that have similar structure but are not replicas

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



135 Beyond NetGAN: Community Preserving GAN

◆Motivation
 Community Structure, as the main character of graph data, existing graph 

generation solutions cannot handle this property.
 Existing autoregressive and random walk-based solutions are not efficient.

NetGAN is Random Walk-based, with low efficiencyreal-world community



136 Beyond NetGAN: Community Preserving GAN

◆Contribution
 Community preserving graph generator: CPVAE-GAN (CPGAN)
 Community-preserving graph encoder：Ladder Encoder
 deprecate random walk sampling, leveraging autoencoder, which is efficient.

Xiang, S., Cheng, D., Zhang, J., Ma, Z., Wang, X., & Zhang, Y. (2022, May). Efficient learning-based community-preserving graph generation. In 2022 IEEE 38th International Conference on 
Data Engineering (ICDE) (pp. 1982-1994). IEEE.

CPVAE-GAN



137 Beyond NetGAN: Community-Preserving GAN

◆Experimental Results

Performance on Community-preserving graph generation

Comparison on training time
Comparison on infernece time



138 Diffusion Model: DiGress

Diffusion models: Two major processes.

Croitoru, Florinel-Alin, et al. "Diffusion models in vision: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 45.9 (2023): 10850-10869.

• Forward process transforms data into noise.
• Generative process learns to transform the noise back into data.



139 Diffusion Model: DiGress

Diffusion model for graph generation: Motivation

Vignac, Clément, et al. "DiGress: Discrete Denoising diffusion for graph generation." ICLR. 2023.

• Motivation for discrete diffusion: no need to predict continuous values that do 
not exist in the data + do not break sparsity

• Adding noise = sampling node or edge types from a categorical distribution.
• No edge = one particular edge type.
• The noise is sampled independently on each node and edge.



140 Diffusion Model: DiGress

Diffusion model for graph generation.

Vignac, Clément, et al. "DiGress: Discrete Denoising diffusion for graph generation." ICLR. 2023.

• Forward process adds noise using Markov transition matrix 𝑄𝑡.
• Generative process learns to transform the noise back into data. A discrete 

𝐺𝑡−1is sampled from the learned categorical distribution.
• Graph generation becomes a sequence of node and edge classification 

tasks.



141 Graph Data Management

➢ Graph Data Quality Management

• Data Quality Assessment

• Data Quality Enhancement

➢ Graph Generation

• Learning-based Graph Generation

• Function-driven Graph Generation



142 Molecular Graph Generation: applications

Drug Discovery: finding molecules with desired chemical properties.

A good drug needs to satisfy multiple objectives: 

• The scale of potential drug-like molecules: 1033~1060

• The scale of existing chemical database: 106

• A huge gap!

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." ICML. PMLR, 2020.
Zang, Chengxi, and Fei Wang. "Moflow: an invertible flow model for generating molecular graphs." Proceedings of the 26th ACM SIGKDD. 2020.



143 Molecular Graph Generation: representations

Edwards, Carl, Qingyun Wang, and Heng Ji. "Language+ molecules." ACL: Tutorial Abstracts. 2024.

Representation of molecular graphs: graphs

 

Nodes: Atoms

Edges: Chemical bonds between atoms



144 Molecular Graph Generation: Models

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

Goal of Molecule Graph Generation

 

Generating realistic, novel and unique molecules with 

desired property.

e.g. drug-likeness, octanol-water partition coefficient



145 Molecular Graph Generation: Models

GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation 

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

Key Idea
• Decompose molecular
graphs into sequences
• Use autoregressive
flows to model the
sequences
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GraphAF: Model Framework

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.



147 Molecular Graph Generation: Models

GraphAF: Goal-Directed Molecule Generation with RL

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

For drug discovery, we also want model to be able to optimize
the chemical properties of generated molecule.
• State: current sub-graph.
• Policy: autoregressive flow to generate node/edge based on
current subgraph.
• Reward: intermediate reward and final reward



148 Molecular Graph Generation: Models

RGFN: Synthesizable Molecular Generation Using GFlowNets: Why FlowNet?

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

Generative Flow Networks (GFlowNets) are a relatively new family of generative models.

Goal: generating high reward, diverse samples in an amortized manner. All crucial in drug discovery!

Shortcomings of the existing methods:
MCMC - lack of amortization,
RL - mean-seeking behaviour; mode collapse.

How to do it? On high level: ensure that the probability of generating a sample is proportional to its reward: 
p(x) ~ R(x). This can be done by training a sampling policy π(x) (a machine learning model).



149 Molecular Graph Generation: Models

GFlowNet for Molecule Design

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

Key ingredients of GFlowNets:

State = current molecule
Action space = fragments to add
Reward function = property of 
interest

How do we ensure molecules
are synthesizable?
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GFlowNet for Molecule Design

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

The goal: constrain the searchable space to highly 
synthesizable compounds.

(while increasing the search space size as much as possible!)



151 Protein Generation

Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation



155 Material Graph Generation

Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

What are Material Graphs

Materials are infinite periodic arrangements of atoms in 3D



156 Material Graph Generation

Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Why Generate Materials?

There are only ~200k unique materials that are experimentally 
known (in contrast, ZINC includes close to a billion drug-like 
molecules).

Today’s material discovery is centred on these ~200k known 
materials. Moving beyond them could offer exciting new 
opportunities for multiple domains in materials science.



157 Material Graph Generation

Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Representation of Periodic Materials

Key Components:
The unit cell (smallest repeating unit) of a material M can be fully defined by three lists:
Atom types: A=(a1 ,…,aN )∈AN

Atom coordinates: 𝑋 = 𝑥1, … , 𝑥𝑁 ∈ ℝ𝑁×3

Periodic lattice: 𝐿 = (𝑙1, 𝑙2, 𝑙3) ∈ ℝ3×3

Infinite Periodic Structure:
{(𝑧𝑖′, 𝑟𝑖′) ∣ 𝑧𝑖′ = 𝑧𝑖, 𝑟𝑖′ = 𝑟𝑖 + 𝑘1𝑙1 + 𝑘2𝑙2 + 𝑘3𝑙3, 𝑘1, 𝑘2, 𝑘3 ∈ ℤ}

This represents the repetition of the unit cell across all integer translations of the lattice vectors.
Interdependence Due to Periodicity:
The periodic lattice 𝐿 and atomic coordinates 𝑋 are interdependent, as the lattice defines how atoms repeat in 3D space.
Goal: Jointly generate 𝑀 = (𝐴, 𝑋, 𝐿) that corresponds to a stable material.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Generate a close random structure

Use MLPAGG(z) (a neural network) to predict three aggregated properties for material generation:

Composition 𝒄: Sparse probability distribution over 100 element.

Lattice 𝑳: Rotation-invariant representation of the periodic lattice.

Number of atoms 𝑵: Probability distribution over possible atom counts.

Motivation: Use these easy-to-predict properties to simplify the task.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Denoise the random structure

Gradually deform ෩𝑀 into a stable material structure 𝑀 = (𝐴, 𝑋, 𝐿) by iteratively:

• Adjusting atom coordinates.

• Updating atom types.

Physics-Guided Design: The GNN’s architecture inherently preserves physical constraints (e.g., lattice 

periodicity, bond lengths).

Efficiency: Focuses updates on critical regions of instability.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Generate novel realistic materials

Task: Sample from latent space to generate 10,000 materials

Evaluation metrics:

Validity: Generated materials satisfy struc./comp. requirements

COV: How many test materials are covered with a similar one

Property statistics: Similarity of property distributions

Result: Significantly outperforming all baselines



/////////////

Q & A

Hanchen Wang
University of Technology Sydney

hanchen.wang@uts.edu.au

Homepage: https://hanchen-wang.com/

Contributors: Hanchen Wang, Ying Zhang and Wenjie Zhang

Thank you!
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