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Introduction



4 Graphs

Graphs are a general language for describing and analyzing 

entities with relations/interactions.



5 Many types of data are graphs

Economic Networks

Citation Networks

Image credit: Missoula Current News

Internet

Image credit: Science Image credit: Lumen Learning

Communication Networks Event Graphs

Image credit: visitlondon.com

Underground Networks
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Image credit: SalientNetworks

Computer Networks

Food Webs

Disease Pathways

Image credit: Wikipedia Image credit: ResearchGate

Code Graphs

Many types of data are graphs

3D Shapes
Image credit: Wikipedia

Image credit: The Conversation

Networks of Neurons



7 Artificial Intelligence-Generated Content (AIGC)

AIGC refers to content that is generated using advanced Generative AI (GAI) techniques, as 
opposed to being created by human authors, which can automate the creation of large 
amounts of content in a short amount of time.

Cao, Yihan, et al. "A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to 
chatgpt." arXiv preprint arXiv:2303.04226 (2023).



8 Introduction about Generative AI Models

Cao, Yihan, et al. "A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to 
chatgpt." arXiv preprint arXiv:2303.04226 (2023).



9 History of Generative AI Models

Cao, Yihan, et al. "A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to 
chatgpt." arXiv preprint arXiv:2303.04226 (2023).



10 Graph Generation

Definition of Graph Generation

Given a set of observed graphs {G}, graph generation aims to construct a generative model pθ (G) 
to capture the distribution of these graphs, from which new graphs can be sampled ෡G ∼  pθ (G) . 
The generation process can be conditioned on additional information s, i.e., conditional graph 
generation ෡G ∼ pθ (G|s) to apply specific constraints on the graph generation results.

{G} ෡G

Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X., 2022. General graph generators: experiments, analyses, and improvements. The VLDB Journal, pp.1-29.



11 Traditional Graph Generators

(Rule-based) Graph Generator

 Number of nodes N, 
edge probability P

Number of nodes N,
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12 Learning-based Graph Generators

……

VAE GAN RNN

(Learning-based) Graph Generator

 

Deep Graph Generator
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13 Graph Similarity

1. Graph Edit Distance(GED) 2. Graph Statistics 
(e.g., triangle counts)

3. Node Distribution
(e.g., Wasserstein Distance)



14 Similarity-based Graph Generation

[1] Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X., 2022. General graph generators: experiments, analyses, and improvements. The VLDB Journal, pp.1-29.

Generated Graph Data：According to the data format, generated data can be divided into: text data, 

image data, table data, and graph structure data. Simulated graph structure data has the good 

properties of the original data and does not contain detailed information of the original data.

Similarity-based deep graph generators：these algorithms have the following advantages: (1) the 
generation performance is significantly improved; (2) input data in different formats can be 
simulated end-to-end; (3) the implicit data distribution on the graph can be effectively captured.

Challenge：  ➢ can hardly simulate large-scale graph data

   ➢ real-world graph data have community structure

original 
graph

……

VAE GAN RNN Generated Graph



15 Application: Generated Molecule Graph

Drug Discovery: finding molecules with desired chemical properties.

A good drug needs to satisfy multiple objectives: 

• The scale of potential drug-like molecules: 1033~1060

• The scale of existing chemical database: 106

• A huge gap!

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." ICML. PMLR, 2020.
Zang, Chengxi, and Fei Wang. "Moflow: an invertible flow model for generating molecular graphs." Proceedings of the 26th ACM SIGKDD. 2020.



16 Application: Generated Protein Structure

Protein design is also a fundamental application of graph generation.

Motif-Scaffolding: design of protein structures ("scaffolds") that can support a specific 
functional motif (a short, conserved sequence or structural element with a defined biological 
function). 

Trippe, Brian L., et al. "Diffusion Probabilistic Modeling of Protein Backbones in 3D for the motif-scaffolding problem." ICLR 2023.



17 Application: Generated Protein Structure

Molecule docking: predict how two molecules (e.g., a protein and a ligand) interact and bind to 
each other. It is widely used in drug discovery, protein-protein interaction studies, and structural 
biology to identify potential binding poses, affinity, and binding sites.

Corso, Gabriele, et al. "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking." International Conference on Learning Representations (ICLR 2023). 2023.



18 Application: Generated Protein Structure

Antibody Design: Design of antibodies (a class of proteins produced by the immune system) to 
bind specific targets (antigens) with high affinity and specificity. This field combines immunology, 
bioinformatics, and protein engineering to develop therapeutic antibodies, diagnostic tools, and 
research reagents.

Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.



19 Application: Generated Material Structure Graph

Periodic Material Generation: Design of materials with repeating structural patterns (periodicity) 
at the atomic, molecular, or mesoscopic scale. Graph generation is used to discover or optimize 
materials with desired properties, such as mechanical strength, thermal conductivity, or 
electronic behavior.

Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.



20 Outline

➢ Similarity-based Graph Generation

➢ Function-driven Graph Generation

➢ Current Trend and Future Directions
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22 Similarity-Based Graph Generation

➢ Recursive: Kronecker

➢ Autoregressive: GraphRNN

➢ Random Walk: NetGAN

➢ Diffusion Model: DiGress

➢ Dynamic Graph Generation

➢ Similarity and Graph Generation



23 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:

 



24 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:

 



25 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:

 



26 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:

 



27 Recursive: Kronecker

Decomposing Graph Generation into Recursive Expansion:

 



28 Recursive: Kronecker
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30 Autoregressive: GraphRNN

Decomposing Graph Generation into two RNNs:

 
➢ Graph-level: generates sequence of nodes

➢ Edge-level: generates sequence of edges for each new node

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.



31 Autoregressive: GraphRNN

Visualization of input graphs and generated graphs

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.



32 Autoregressive: GraphRNN

Quantitative Comparison on Generative Performance

You, Jiaxuan, et al. "Graphrnn: Generating realistic graphs with deep auto-regressive models." International conference on machine learning. PMLR, 2018.
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34 Random Walk: NetGAN

Explicit vs. implicit models

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.

• Explicit models have a parametric specification 
of the data distribution 

• Observe patterns and manually specify a model 
to capture them 

• Learn via MLE, …

• Implicit models define a stochastic process 
that directly generates data 

• Likelihood free: learn by comparison with the 
true data distribution (e.g. class probability 
estimation, GANs)



35 Random Walk: NetGAN

Challenges 

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.

1. Single large graph as input 
• Compared to e.g. many images in computer vision 

2. Quadratic scaling and sparsity 
• For 𝑁 nodes there are 𝑁2 possible edges 
• Real graphs have |𝐸| ≪ 𝑁2 significantly fewer edges
 
3. Discrete output samples 
• Can’t easily backpropagate through sampling step 

4. Permutation invariance



36 Random Walk: NetGAN

Decomposing Graph Generation into learning a distribution of random walks over the graph

 

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



37 Random Walk: NetGAN

Model Framework Generator

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



38 Random Walk: NetGAN

Graph assembly: sample edges with probability proportional to their transition counts

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



39 Random Walk: NetGAN

Key point: Generate graphs that have similar structure but are not 
replicas

Bojchevski, Aleksandar, et al. "Netgan: Generating graphs via random walks." International conference on machine learning. PMLR, 2018.



40 Beyond NetGAN: Community Preserving GAN

◆Motivation
 Community Structure, as the main character of graph data, existing graph 

generation solutions cannot handle this property.
 Existing autoregressive and random walk-based solutions are not efficient.

NetGAN is Random Walk-based, with low efficiencyreal-world community



41 Beyond NetGAN: Community Preserving GAN

◆Contribution
 Community preserving graph generator: CPVAE-GAN (CPGAN)
 Community-preserving graph encoder：Ladder Encoder
 deprecate random walk sampling, leveraging autoencoder, which is efficient.

Xiang, S., Cheng, D., Zhang, J., Ma, Z., Wang, X., & Zhang, Y. (2022, May). Efficient learning-based community-preserving graph generation. In 2022 IEEE 38th International Conference on 
Data Engineering (ICDE) (pp. 1982-1994). IEEE.

CPVAE-GAN



42 Beyond NetGAN: Community-Preserving GAN

◆Experimental Results

Performance on Community-preserving graph generation

Comparison on training time
Comparison on infernece time
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44 Diffusion Model: DiGress

Diffusion models: Two major processes.

Croitoru, Florinel-Alin, et al. "Diffusion models in vision: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence 45.9 (2023): 10850-10869.

• Forward process transforms data into noise.
• Generative process learns to transform the noise back into data.



45 Diffusion Model: DiGress

Diffusion model for graph generation: Motivation

Vignac, Clément, et al. "DiGress: Discrete Denoising diffusion for graph generation." ICLR. 2023.

• Motivation for discrete diffusion: no need to predict continuous values that do 
not exist in the data + do not break sparsity

• Adding noise = sampling node or edge types from a categorical distribution.
• No edge = one particular edge type.
• The noise is sampled independently on each node and edge.



46 Diffusion Model: DiGress

Diffusion model for graph generation.

Vignac, Clément, et al. "DiGress: Discrete Denoising diffusion for graph generation." ICLR. 2023.

• Forward process adds noise using Markov transition matrix 𝑄𝑡.
• Generative process learns to transform the noise back into data. A discrete 

𝐺𝑡−1is sampled from the learned categorical distribution.
• Graph generation becomes a sequence of node and edge classification 

tasks.
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48 Dynamic Graph Generation

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.



49 Dynamic Graph Generation (Background)

……

VAE GAN RNN

Temporal Graph Generator

original 
temporal 

graph
Simulated Temporal 

Graph



50 Dynamic Graph Generation

Temporal Random Walk-based Generation (State-of-the-art)

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.



51 Dynamic Graph Generation

Limitations and Motivation 

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.

1. Large amount of sampled random walks.

2. High computation complexity in time level. (e.g., 
Taggen, TGGAN has O(N2T2) complexity.

1. Moderate amount of sampled sub-graphs.

2. Acceptable computation complexity in time level. (e.g., 
our proposed TGAE has O(N2T) complexity.



52 Dynamic Graph Generation

Proposed model: TGAE

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.



53 Dynamic Graph Generation

Comprehensive Comparison on Temporal Graph Simulation

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.



54 Dynamic Graph Generation

Comprehensive Comparison on Temporal Graph Simulation

Sheng, Xiang, et al. "Efficient Learning-based Graph Simulation for Temporal Graphs." IEEE ICDE 2025.

Dynamic Graph Key motif structure



55 Dynamic Graph Generation

Graph Generation in Data Management (Motivation)

Li, F., Wang, X., Cheng, D., Chen, C., Zhang, Y., & Lin, X. (2025). Efficient Dynamic Attributed Graph Generation. In IEEE IC DE 2025.

1. A lack of realistic graphs for evaluating the performance of the graph processing system.

2.   Synthetic graphs can be used in many network analysis tasks, such as community detection.

3.   The simulated graph anonymizes node entities and their link relationships, preventing the leakage 

of private data.

(1) Friend Network (2) User-item Network (3) Financial Network



56 Dynamic Graph Generation

VRDAG: Variational Recurrent Dynamic Attributed Generator

Li, F., Wang, X., Cheng, D., Chen, C., Zhang, Y., & Lin, X. (2025). Efficient Dynamic Attributed Graph Generation. In IEEE IC DE 2025.

The overall framework of VRDAG



57 Dynamic Graph Generation

Bi-flow Message Passing Encoder 𝜀

Li, F., Wang, X., Cheng, D., Chen, C., Zhang, Y., & Lin, X. (2025). Efficient Dynamic Attributed Graph Generation. In IEEE IC DE 2025.

We divide the neighborhood message of 𝑣𝑖 into in-flow message 𝑖𝑛
 ℎ𝑖,𝑡 and 

out-flow message 𝑜𝑢𝑡
 ℎ𝑖,𝑡. The bidirectional message passing can be 

formulated as:

In each layer, we apply a node aggregator 𝑓𝑎𝑔𝑔 on 𝑖𝑛
 ℎ𝑖,𝑡

(𝑙)
 and 𝑜𝑢𝑡

 ℎ𝑖,𝑡
(𝑙)

 to get 

hop-level node message ℎ𝑖,𝑡
(𝑙)

:

Finally, we use jump-connection technique to integrate hop-level node message from each layer as:



58 Dynamic Graph Generation

VRDAG: Variational Recurrent Dynamic Attributed Generator

Li, F., Wang, X., Cheng, D., Chen, C., Zhang, Y., & Lin, X. (2025). Efficient Dynamic Attributed Graph Generation. In IEEE IC DE 2025.

The overall framework of VRDAG
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60 Similarity and Graph Generation

Graph generation aiming to maximize the similarity

Graph generation (simulation) methods are designed to maximize the similarity between generated graphs and 
observed graphs.

Graph similarities are used as the objectives of graph generation models.

1. Graph Edit Distance(GED) 2. Graph Statistics 
(e.g., triangle counts)

3. Node Distribution
(e.g., Wasserstein Distance)

Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X., 2022. General graph generators: experiments, analyses, and improvements. The VLDB Journal, pp.1-29.



61 Similarity and Graph Generation

How about graph generation for graph similarity

Let’s start with a fundamental graph similarity metric: Graph Edit Distance.

Graph Edit Distance aims to determine the minimum number of edit operations required to transform one graph 
into another, and the sequence of edit operations is called a graph edit path.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).



62 Similarity and Graph Generation

GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

Graph edit distance can be modelled as maximum bipartite matching.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.

a, b: An instance of graph edit path. c, d: Solving GED via bipartite matching.



63 Similarity and Graph Generation

GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.

Bipartite graph matching

Bipartite graph generation



64 Similarity and Graph Generation

GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.



65 Similarity and Graph Generation

GEDGNN: Computing Graph Edit Distance via Neural Graph Matching

A Two-step Framework:

• Using GNN to predict a GED and generate a node matching matrix.
• Post-processing the node matching matrix to find a short edit path.

Piao, Chengzhi, et al. "Computing graph edit distance via neural graph matching." Proceedings of the VLDB Endowment 16.8 (2023): 1817-1829.



66 Similarity and Graph Generation

DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

Can diffusion models be applied on Graph Edit Distance Computation?

Diffusion models for generation of (bipartite) graph matching.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).



67 Similarity and Graph Generation

DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

In the first phase, DiffGED first samples 𝑘 random initial node matching matrices, then DiffMatch will denoise 
the sampled node matching matrices. 
In the second phase, one node mapping will be extracted from each node matching matrix in parallel, and edit 
paths will be derived from the node mappings.

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).



68 Similarity and Graph Generation

DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching

Experimental results: achieve state-of-the-art performance with nearly 100% accuracy. 

Huang, Wei, et al. "DiffGED: Computing Graph Edit Distance via Diffusion-based Graph Matching." arXiv preprint arXiv:2503.18245 (2025).
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70 Function-Driven Graph Generation

➢ Molecular Graph Generation

➢ Protein Structure Generation

➢ Material Graph Generation



71 Molecular Graph Generation: applications

Drug Discovery: finding molecules with desired chemical properties.

A good drug needs to satisfy multiple objectives: 

• The scale of potential drug-like molecules: 1033~1060

• The scale of existing chemical database: 106

• A huge gap!

Jin, Wengong, Regina Barzilay, and Tommi Jaakkola. "Multi-objective molecule generation using interpretable substructures." ICML. PMLR, 2020.
Zang, Chengxi, and Fei Wang. "Moflow: an invertible flow model for generating molecular graphs." Proceedings of the 26th ACM SIGKDD. 2020.



72 Molecular Graph Generation: representations

Yang, Nianzu, et al. "Molecule generation for drug design: a graph learning perspective." Fundamental Research (2024).

Representation of molecular graphs

 



73 Molecular Graph Generation: representations

Edwards, Carl, Qingyun Wang, and Heng Ji. "Language+ molecules." ACL: Tutorial Abstracts. 2024.

Representation of molecular graphs: SMILES

 



74 Molecular Graph Generation: representations

Edwards, Carl, Qingyun Wang, and Heng Ji. "Language+ molecules." ACL: Tutorial Abstracts. 2024.

Representation of molecular graphs: SMILES

 
• The best known string representation for 

molecules is Simplified molecular-input line-
entry system, commonly known as SMILES.

• SMILES strings have been used to store 
molecular structures for decades.

• GPT models have been exposed to SMILES in 
their training data.

How does SMILES work?

• Atoms are represented as 1-2 characters, such 
as ‘C’ for carbon, ‘Br’ for bromine, and ‘F’ for 
fluorine.

• Rings are created through the use of numbers.

• Branches are created with parenthesis.

• Hydrogens are usually implicit.



75 Molecular Graph Generation: Models

Bagal, Viraj, et al. "MolGPT: molecular generation using a transformer-decoder model." Journal of chemical information and modeling 62.9 (2021): 2064-2076.

Language models for molecular graph generation

 



76 Molecular Graph Generation: Models

Bagal, Viraj, et al. "MolGPT: molecular generation using a transformer-decoder model." Journal of chemical information and modeling 62.9 (2021): 2064-2076.

Language models for molecular graph generation

 

Conditioning on properties:
(a) logP, (b) TPSA, (c) SAS, and (d) QED

Conditioning on multiple properties at once



77 Molecular Graph Generation: representations

Edwards, Carl, Qingyun Wang, and Heng Ji. "Language+ molecules." ACL: Tutorial Abstracts. 2024.

Representation of molecular graphs: graphs

 

Nodes: Atoms

Edges: Chemical bonds between atoms



78 Molecular Graph Generation: Models

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

Goal of Molecule Graph Generation

 

Generating realistic, novel and unique molecules with 

desired property.

e.g. drug-likeness, octanol-water partition coefficient



79 Molecular Graph Generation: Models

GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation 

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

Key Idea
• Decompose molecular
graphs into sequences
• Use autoregressive
flows to model the
sequences



80 Molecular Graph Generation: Models

GraphAF: Model Framework

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.



81 Molecular Graph Generation: Models

GraphAF: Goal-Directed Molecule Generation with RL

Shi, Chence, et al. "GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation." ICLR 2020.

For drug discovery, we also want model to be able to optimize
the chemical properties of generated molecule.
• State: current sub-graph.
• Policy: autoregressive flow to generate node/edge based on
current subgraph.
• Reward: intermediate reward and final reward



82 Molecular Graph Generation: Models

RGFN: Synthesizable Molecular Generation Using GFlowNets: Why FlowNet?

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

Generative Flow Networks (GFlowNets) are a relatively new family of generative models.

Goal: generating high reward, diverse samples in an amortized manner. All crucial in drug discovery!

Shortcomings of the existing methods:
MCMC - lack of amortization,
RL - mean-seeking behaviour; mode collapse.

How to do it? On high level: ensure that the probability of generating a sample is proportional to its reward: 
p(x) ~ R(x). This can be done by training a sampling policy π(x) (a machine learning model).



83 Molecular Graph Generation: Models

GFlowNet for Molecule Design

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

Key ingredients of GFlowNets:

State = current molecule
Action space = fragments to add
Reward function = property of 
interest

How do we ensure molecules
are synthesizable?



84 Molecular Graph Generation: Models

GFlowNet for Molecule Design

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

The goal: constrain the searchable space to highly 
synthesizable compounds.

(while increasing the search space size as much as possible!)



85 Molecular Graph Generation: Models

RGFN: Synthesizable Molecular Generation Using GFlowNets: Model

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.



86 Molecular Graph Generation: Models

RGFN: Synthesizable Molecular Generation Using GFlowNets: Model

Koziarski, Michał, et al. "Rgfn: Synthesizable molecular generation using gflownets." Advances in Neural Information Processing Systems 37 (2024): 46908-46955.

We select a total of 350 affordable reagents 
(≤$200/g) and 17 high-yield reactions.

Molecule space generated by this approach with 
depth 4 is larger than most compound libraries.



87 Molecular Graph Generation: Models

Molecule Generation with Fragment Retrieval Augmentation

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

Motivation

Fragment-based drug discovery (FBDD) has been considered as an effective approach to explore the 
chemical space. 

• Generative models have been adopted in the field of FBDD to accelerate the process. 

• Many fragment-based molecule generation methods show limited exploration as they only 

reassemble or slightly modify the given fragments. 

• FBDD + RAG → Fragment Retrieval-Augmented Generation (𝒇-RAG). 𝑓-RAG augments the pre-

trained molecular language model SAFE-GPT with two types of retrieved fragments: hard fragments 

and soft fragments.
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Molecule Generation with Fragment Retrieval Augmentation

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

Construct a fragment vocabulary. 

• Decompose known molecules from the existing library into fragments and scoring the fragments. 
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Molecule Generation with Fragment Retrieval Augmentation

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

𝑓-RAG retrieves fragments that will be explicitly included in the new molecule (i.e., hard fragments).

• Hard fragments serve as the input context to the molecular language model that predicts the remaining 

fragments. 
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Molecule Generation with Fragment Retrieval Augmentation

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

𝑓-RAG retrieves fragments that will not be part of the generated molecule but provide guidance (i.e., 

soft fragments). 

• The soft fragment embeddings are fused with the hard fragment embeddings through a lightweight fragment 

injection module in the middle of SAFE-GPT.
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Molecule Generation with Fragment Retrieval Augmentation

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

𝑓-RAG updates the fragment vocabulary with generated fragments via an iterative refinement 
process which is further enhanced with post-hoc genetic fragment modification.
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Molecule Generation with Fragment Retrieval Augmentation: Experiment

Lee, Seul, et al. "Molecule generation with fragment retrieval augmentation." Advances in Neural Information Processing Systems 37 (2024): 132463-132490.

𝑓-RAG outperformed the previous methods in the PMO goal-directed hit generation benchmark. 
𝑓-RAG achieved improved trade-offs between optimization performance, diversity, novelty, and synthesizability.
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Background

Kirchmeyer, Matthieu, Pedro O. O Pinheiro, and Saeed Saremi. "Score-based 3D molecule generation with neural fields." NeurIPS (2024): 10646-10678.
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Background

Kirchmeyer, Matthieu, Pedro O. O Pinheiro, and Saeed Saremi. "Score-based 3D molecule generation with neural fields." NeurIPS (2024): 10646-10678.
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What is Neural Field

Kirchmeyer, Matthieu, Pedro O. O Pinheiro, and Saeed Saremi. "Score-based 3D molecule generation with neural fields." NeurIPS (2024): 10646-10678.
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Neural Field based Auto-encoder

Kirchmeyer, Matthieu, Pedro O. O Pinheiro, and Saeed Saremi. "Score-based 3D molecule generation with neural fields." NeurIPS (2024): 10646-10678.
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➢ Molecular Graph Generation

➢ Protein Structure Generation

➢ Material Graph Generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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Luo, Shitong, et al. "Antigen-specific antibody design and optimization with diffusion-based generative models for protein structures." NeurIPS (2022): 9754-9767.

Antibody generation
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➢ Molecular Graph Generation

➢ Protein Structure Generation

➢ Material Graph Generation
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

What are Material Graphs

Materials are infinite periodic arrangements of atoms in 3D



105 Material Graph Generation

Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Why Generate Materials?

There are only ~200k unique materials that are experimentally 
known (in contrast, ZINC includes close to a billion drug-like 
molecules).

Today’s material discovery is centred on these ~200k known 
materials. Moving beyond them could offer exciting new 
opportunities for multiple domains in materials science.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Representation of Periodic Materials

Key Components:
The unit cell (smallest repeating unit) of a material M can be fully defined by three lists:
Atom types: A=(a1 ,…,aN )∈AN

Atom coordinates: 𝑋 = 𝑥1, … , 𝑥𝑁 ∈ ℝ𝑁×3

Periodic lattice: 𝐿 = (𝑙1, 𝑙2, 𝑙3) ∈ ℝ3×3

Infinite Periodic Structure:
{(𝑧𝑖′, 𝑟𝑖′) ∣ 𝑧𝑖′ = 𝑧𝑖, 𝑟𝑖′ = 𝑟𝑖 + 𝑘1𝑙1 + 𝑘2𝑙2 + 𝑘3𝑙3, 𝑘1, 𝑘2, 𝑘3 ∈ ℤ}

This represents the repetition of the unit cell across all integer translations of the lattice vectors.
Interdependence Due to Periodicity:
The periodic lattice 𝐿 and atomic coordinates 𝑋 are interdependent, as the lattice defines how atoms repeat in 3D space.
Goal: Jointly generate 𝑀 = (𝐴, 𝑋, 𝐿) that corresponds to a stable material.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Generate a close random structure

Use MLPAGG(z) (a neural network) to predict three aggregated properties for material generation:

Composition 𝒄: Sparse probability distribution over 100 element.

Lattice 𝑳: Rotation-invariant representation of the periodic lattice.

Number of atoms 𝑵: Probability distribution over possible atom counts.

Motivation: Use these easy-to-predict properties to simplify the task.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Denoise the random structure

Gradually deform ෩𝑀 into a stable material structure 𝑀 = (𝐴, 𝑋, 𝐿) by iteratively:

• Adjusting atom coordinates.

• Updating atom types.

Physics-Guided Design: The GNN’s architecture inherently preserves physical constraints (e.g., lattice 

periodicity, bond lengths).

Efficiency: Focuses updates on critical regions of instability.
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Xie, Tian, et al. "Crystal Diffusion Variational Autoencoder for Periodic Material Generation." International Conference on Learning Representations 2022.

Generate novel realistic materials

Task: Sample from latent space to generate 10,000 materials

Evaluation metrics:

Validity: Generated materials satisfy struc./comp. requirements

COV: How many test materials are covered with a similar one

Property statistics: Similarity of property distributions

Result: Significantly outperforming all baselines



/////////////

AIGC for Graphs: Current Techniques and 
Future Trends

Speaker:
Hanchen Wang

Contributors: Hanchen Wang, Dawei Cheng, Ying Zhang and Wenjie Zhang

Current Trend and Future Direction
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Current Trend
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Yao, Yang, et al. "Exploring the potential of large language models in graph generation." arXiv preprint arXiv:2403.14358 (2024).

LLM for graph generation (Based on Prompt Engineering)
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Yao, Yang, et al. "Exploring the potential of large language models in graph generation." arXiv preprint arXiv:2403.14358 (2024).

Rule-based graph generation

Prompt Design:
• Zero-shot: The prompt contains the relevant information about the rules, as well as a specification of the 
output format. The model is then asked to generate graphs using the given rules. 
• Few-shot: In addition to the zero-shot prompt, the model is given several graph examples that follow the given 
rules. The edges of the graphs are sorted by the node ID to facilitate the model understanding.
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Yao, Yang, et al. "Exploring the potential of large language models in graph generation." arXiv preprint arXiv:2403.14358 (2024).

Distribution-based graph generation

Prompt Design:

In prompt, we introduce the graph 
generation task and the target 
distribution, and provide a set of graphs 
sampled from the target distribution as 
the input. 
Then, the model is asked to infer the 
value of p (i.e., whether the graph 
follows the given distribution) and 
generate new graphs. 
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Yao, Yang, et al. "Exploring the potential of large language models in graph generation." arXiv preprint arXiv:2403.14358 (2024).

Property-based graph generation

Prompt Design:

LLM is given a description of the 
desired property and a collection of 
molecules that have the property. 
Then, the model is asked to generate 
new molecules with the same property. 
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Liu, Zhiyuan, et al. "NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation." ICLR 2025

Fine-tuning on LLMs

(1) MoLlama, a large LM for 
generating 1D molecule 
sequences
(2) DMT, a diffusion model to 
predict 3D conformers from the 
1D sequences
(3)NExT-Mol leverages transfer 
learning to enhance DMT’s 3D 
prediction with MoLlama’s 1D 
representations.
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Liu, Jiawei, et al. "Graph foundation models: Concepts, opportunities and challenges." IEEE Transactions on Pattern Analysis and Machine Intelligence (2025).

Graph Foundation Models?

A graph foundation model is a large-scale, 
pre-trained artificial intelligence model 
designed to understand, analyze, and 
generate graph-structured data.

Using a graph foundation model to 
generate graphs with specific distribution 
and property is still a wide-open direction.
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• Efficient Generation: reduce the computational cost for graph generation.

• Interpretable Generation: generate graphs with explicit constraints.

• Integration with Physical Law: generate graphs that follow chemical and 

biomedical law.

• Cross-Modal Generation: Build models that convert between graph and non-

graph data.
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Hanchen Wang
University of Technology Sydney

hanchen.wang@uts.edu.au

Homepage: https://hanchen-wang.com/

Q & A

Thank you!
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